top of page

Journal Publications

  1. Dixit, N., Nair M. Akhila; Singh, S. P. (2024).Enhanced Enhanced Bacterial and Virus Disinfection with Copper Nanoparticle optimized LIG Composite Electrodes and Filters. Journal of Environmental Sciences (accepted)
    Kumar, P., Nawaz, T., & Singh, S. P (2024). Evaluation and optimization of electrocoagulation process parameters for the treatment of oil industry drill site wastewater Environmental Science and Pollution Research. (under review with journal)

  2. Barbhuiya, N. H.; Singh, S. P. Ex-situ and In-situ Organic Fouling Monitoring in Laser-induced Graphene-Based Electroconductive Membranes for Desalination and Wastewater Treatment. ACS App. Nano Mat. 2024. 

  3. Barbhuiya, N. H.; Nair, A. M.; Dixit, N.; Singh, S. P. Iron Nanoparticles Incorporated Laser-Induced Graphene Filters for Environmental Remediation via In-situ Electro-Fenton Process. ACS Omega 2024. 

  4. Barbhuiya, N. H.; Misra, U.; Kanwar, B.; Singh, S. P. Persulfate Enhanced Ciprofloxacin Removal from Water by Laser-Induced Graphene-Based Electroconductive Ultrafiltration Membrane. Environ. Sci.: Water Res. Technol. 2024, 10 (2), 442-456. 

  5. Misra, U.; Barbhuiya, N.H.; Rather Z.H.; Singh, S.P.# (2024) Solar interfacial evaporation devices for desalination and water treatment: Perspective and future, Advances in Colloid and Interface Science, 2024. (IF-15.5), #corresponding author

  6. Senthilkumar, K., Wanjari, V. P., Kanwar, B., Singh, S. P.# (2024) Laser-Induced Graphene as a Cathode Catalyst for Microbial Fuel Cell. ACS Applied Nano Materials 7 (3), 2639–2649. #corresponding author

  7. Misra, U., Jashrapuria, K.; Singh, S.P.# (2023) Fabrication of Polyether Sulfone-Laser Induced Graphene Composite Electroconductive Membrane and its Application in Biofouling Control and Chromium Removal. Journal of Membrane Science, 694, 122394 (IF-9.5) #corresponding author

  8. Bhattacharya M; Barbhuiya N.H; Singh S.P. Performance Evaluation of Sulfidated Nanoscale Iron for Hexavalent Chromium Removal from Groundwater in Sequential Batch Study. Environmental Science and Pollution Research. 2023, 30 (59),123055-123066. 

  9. Jashrapuria, K., & Singh, S. P. (2023). Zwitterionic polymer brush functionalized graphene oxide blended polyethersulfone membrane with enhanced performance and anti-biofouling properties. Journal of Membrane Science, 687, 122032.

  10. Koli, M. M., Ranjan R. and Singh S. P. (2023) Functionalized graphene-based Ultrafiltration and Thin-film composite Nanofiltration Membranes for Arsenic, Chromium, and Fluoride removal from Simulated Groundwater: Mechanism and effect of pH.  Process Safety and Environmental Protection. 179, 603-617 (IF: 7.8)

  11. Koli, M. M. and Singh, S. P. (2023) Surface-modified ultrafiltration and nanofiltration membranes for the selective removal of heavy metals and inorganic groundwater contaminants: a review. RSC Environmental Science: Water Research & Technology. 9, 2803-2829 (IF: 5)

  12. Nair, A.M., Kumar, A., Barbhuiya, N.H. and Singh, S.P. (2023) Electrochemical Inactivation of Enteric Viruses MS2, T4, and phi6 using Doped Laser-Induced Graphene Electrodes and Filters. Environ. Sci.: Nano. 10, 2077-2089. https://doi.org/10.1039/d3en00124e.

  13. Wanjari, V. P., Duttagupta, S. P., & Singh, S. P. (2023). Dual Linear Range Laser-Induced Graphene-Based Sensor for 4-Nitrophenol Detection in Water. ACS Applied Nano Materials, 6. https://doi.org/10.1021/acsanm.3c01396

  14. Kothawale, S.S., Kumar, L. and Singh, S.P., (2023). Role of organisms and their enzymes in the biodegradation of microplastics and nanoplastics: A review. Environmental Research, p.116281.

  15. Misra, U., Dixit, N., and Singh, S.P., (2023) Effect of Laser Parameters on Laser-Induced Graphene Filter Fabrication and Its Performance for Desalination and Water Purification. ACS Applied Materials & Interfaces, 15, 7899-7910. (IF-9.5)

  16. Reddy, A. S., Wanjari, V. P., & Singh, S. P. (2023). Design, synthesis, and application of thermally responsive draw solutes for sustainable forward osmosis desalination: A review. https://doi.org/10.1016/j.chemosphere.2023.137790

  17. Misra, U. Dixit, N. and Singh, S.P., (2023) Effect of Laser Parameters on Laser-Induced Graphene Filter Fabrication and Its Performance for Desalination and Water Purification. ACS Applied Materials & Interfaces, 15, 7899-7910. (IF-9.5),

  18. Kumar, A.; Barbhuiya, N. H.; Nair, A. M.; Jashrapuria, K.; Dixit, N.; Singh, S. P. (2023) In-situ Fabrication of Titanium Suboxide-Laser Induced Graphene Composites: Removal of Organic Pollutants and MS2 Bacteriophage. Chemosphere, 138988. https://doi.org/10.1016/j.chemosphere.2023.138988.

  19. Wanjari, V.P., Reddy, A.S., Duttagupta, S.P. and Singh, S.P., (2023). Laser-induced graphene-based electrochemical biosensors for environmental applications: a perspective. Environmental Science and Pollution Research, 30(15), pp.42643-42657.

  20. Kumar, A.; Barbhuiya, N. H.; Jashrapuria, K.; Dixit, N.; Arnusch, C. J.; Singh, S. P. (2022) Magnéli-Phase Ti4O7-Doped Laser-Induced Graphene Surfaces and Filters for Pollutant Degradation and Microorganism Removal. ACS Appl. Mater. Interfaces. https://doi.org/10.1021/acsami.2c10348.

  21. Barbhuiya, N.H., Misra, U., and Singh, S.P., (2022) Stacked Laser-Induced Graphene Joule Heaters for Desalination and Water Recycling, ACS Applied Nano Materials, 5, 10991-11002. (IF-5.9),

  22. Kumar, A.; Barbhuiya, N. H.; Singh, S. P. (2022) Magnéli Phase Titanium Sub-Oxides Synthesis, Fabrication and Its Application for Environmental Remediation: Current Status and Prospect. Chemosphere, 307, 135878. https://doi.org/10.1016/j.chemosphere.2022.135878.

  23. Dixit, N., & Singh, S. P. (2022). Laser-Induced Graphene (LIG) as a Smart and Sustainable Material to Restrain Pandemics and Endemics: A Perspective. ACS omega, 7(6), 5112-5130.

  24. Barbhuiya, N. H., Misra, U., and Singh S.P., (2022) Biocatalytic membranes for combating the challenges of membrane fouling and micropollutants in water purification: A review, Chemosphere, 286, 131757. (IF-8.8)

  25. Agrawal S., Ranjan R., Lal B., Rahman A., Singh S. P., Selvaratnam T. and Nawaz T. (2021) Synthesis and Water Treatment Applications of Nanofibers by Electrospinning. Processes. 9(10), 1779 (IF:3.5)

  26. Barbhuiya, N. H.; Kumar, A.; Singh, A.; Chandel, M. K.; Arnusch, C. J.; Tour, J. M.; Singh, S. P. (2021) The Future of Flash Graphene for the Sustainable Management of Solid Waste. ACS Nano, 15 (10), 15461–15470. https://doi.org/10.1021/acsnano.1c07571.

  27. Barbhuiya, N. H., Misra, U., and Singh, S.P., (2021) Synthesis, fabrication, and mechanism of action of electrically conductive membranes: a review, Environmental Science: Water Research & Technology, 7, 671-705. (IF-5.0)

  28. Barbhuiya, N. H.; Singh, S. P. (2021); Makovitzki, A.; Narkhede, P.; Oren, Z.; Adar, Y.; Lupu, E.; Cherry, L.; Monash, A.; Arnusch, C. J. Virus Inactivation in Water Using Laser-Induced Graphene Filters. Materials, 14 (12), 3179. https://doi.org/10.3390/ma14123179.

  29. Barbhuiya, N. H.; Kumar, A.; Singh, S. P. (2021) A Journey of Laser-Induced Graphene in Water Treatment. Trans. Indian Natl. Acad. Eng., 1–13. https://doi.org/10.1007/s41403-021-00205-2.

  30. Luong D.X., Yang, K., Yoon, J., Singh, S.P., Wang, T., Arnusch, C.J., and Tour, J. M. (2019) Laser-induced Graphene Composite Multifunctional Surface for Energy and Environmental application. ACS Nano. 13 (2), pp 2579-2586. (IF-13.71)

  31. Thakur, A.K.#, Singh, S.P.#,  Kleinberg, M.N., Gupta, A., and Arnusch, C.J. (2019) Laser-Induced Graphene–PVA Composites as Robust Electrically Conductive Water Treatment Membranes. ACS Applied Materials & Interfaces, 10.1021/acsami.9b00510. (IF-8.10) #Authors with equal contribution.

  32. Singh, S.P., Ramanani, S., Kaufman, Y. and Arnusch, C.J. (2018) Laser-Induced Graphene Biofilm Inhibition: Texture Does Matter. ACS Applied Nano Materials. 1 (4), 713–1720.

  33. Chyan, Y., Ye, R., Li, Y., Singh, S.P., J., Arnusch, C.J., and Tour, J. M. (2018) Laser-Induced Graphene by Multiple Lasing: Towards Electronics on Cloth, Paper and Food. ACS Nano. 12 (3), 2176–2183. (IF-13.71)

  34. Karthik, R., Singh, S.P., Kasher, R. and Arnusch, C.J. (2018) An environmentally-friendly chitosan-lysozyme bio-composite for the removal of dyes and heavy metals from aqueous solutions. Carbohydrate Polymer. 199, 506-515  (IF-5.16)

  35. Singh, S.P., Li, Y., Zhang, J., Tour, J. M., and Arnusch, C.J. (2018) Sulfur-doped Laser Induced Porous Graphene Derived Form Polysulfone-class Polymers and Membranes. ACS Nano. 12(1), 289-297. (IF-13.71)

  36. Bernstein, R., Singer, C. E., Singh, S. P., Canwei, M., and Arnusch, C.J. (2018) UV Initiated Surface Grafting on Polyethersulfone Ultrafiltration Membranes via Ink-jet Printing Assisted Modification. Journal of Membrane Science. 548, 73-80 (IF-6.66)

  37. Singh, S.P.#, Karthik, R.#, Kasher, R. and Arnusch, C.J. (2018) Hexavalent chromium ion and methyl orange dye uptake via a silk protein sericin-chitosan conjugate. RSC Advances. 8(48), 27027-27036. (IF-2.94). #Authors with equal contribution

  38. Karthik, R.#, Singh, S.P.#, Li, Y., Tour, J.M., Kasher, R. and Arnusch, C.J. (2017) Polyimide Derived Laser-induced Graphene as Adsorbent for Cationic and Anionic Dyes. Carbon. 124,513-522. (IF-7.08). #Authors with equal contribution

  39. Singh, S.P., Li, Y., Be’er, A., Oren, Y., Tour, J.M. and Arnusch, C.J. (2017) Laser-Induced Graphene Layers and Electrodes Prevents Microbial Fouling and Exerts Antimicrobial Action. ACS Applied Materials & Interfaces, 9(21), 18238-18247. (IF-8.10)

  40. Singh, S.P., Guha, S., Bose, P. and Kunnikuruvan, S. (2017) Mechanism of the Hydrolysis of Endosulfan Isomers. The Journal of Physical Chemistry A (ACS), 121(27), 5156-5163. (IF-2.84)

  41. Singh, S.P., and Bose, P. (2017) Reductive Dechlorination of Endosulfan Isomers and its Metabolites by Zero-valent Metals: Reaction Mechanism and Degradation Products. RSC Advances, 7(44), 27668-27677. (IF-2.94)

  42. Singh, S.P., Bose, P. and Guha, S. (2017) Impact of the Composition of the Bacterial Population and Additional Carbon Source on Pathway and Kinetics of Degradation of Endosulfan Isomers. Environmental Science: Processes & Impacts (RSC), 19, 964-974. (IF-2.50)

  43. Singh, S.P., and Bose, P. (2016) Degradation Kinetics of Endosulfan Isomers by Micron- and Nano-sizedZero Valent Iron Particles (MZVI and NZVI). Journal of Chemical Technology & Biotechnology (Wiley), 91(8), 2313-2321. (IF-2.59)

  44. Singh, S.P., and Bose, P. (2015) Degradation of Soil-adsorbed DDT and its Residues by NZVI Addition. RSC Advances, 5(114), 94418-94425. (IF-2.94)

  45. Singh, S. P., Bose, P., Guha, S., Gurjar, S., Bhalekar, S., (2013) Impact of Addition of Amendments on the Degradation of DDT and its Residues Partitioned on Soil. Chemosphere, 92(7), 811-820. (IF-4.42)

google_graduation-520x245.jpg
RG.png
  • Facebook Clean Grey
  • Twitter Clean Grey
  • LinkedIn Clean Grey
bottom of page